
NUMERICAL ANALYSIS TOPIC I
THE EUCLIDEAN ALGORITHM

PAUL L. BAILEY

1. Well-Ordering Principle

First we establish a few properties of the integers which we need in order
to develop the Euclidean algorithm. One tool which can be used to establish
these properties is the Well-Ordering Principle. This follows from the principle
of induction, which we assume.

Proposition 1. Well-Ordering Principle
Let X ⊂ N be a nonempty set of nonnegative integers. Then X contains a
smallest, element; that is, there exists x0 ∈ X such that for every x ∈ X,
x ≤ x0.

Proof. Since X is nonempty, it contains an element, say x1. If x1 is the smallest
member of X, we are done, so assume that the set

Y = {x ∈ X | y < x1}
is nonempty. Since there are only finitely many natural numbers less than a
given natural number, Y is finite.

Proceed by induction on |Y |. If |Y | = 1, then Y contains exactly one element,
which is vacuously the smallest member of Y .

Now assume that |Y | = n. By induction, we assume that any nonempty set
with less than n elements contains a smallest member. Since Y is nonempty, let
x2 ∈ Y . If x2 is the smallest member of Y , we are done, so assume that the set

Z = {x ∈ Y | x < x2}
is nonempty. Since x2 /∈ Z, |Z| < n, so Z contains a smallest member (by our
inductive hypothesis), say x0. Then x0 is also smaller than any element in Y .
This completes the proof by induction.

Thus every finite set of natural numbers has a smallest element, and since
Y is finite, is has a smallest element. This element is the smallest member of
X. �
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2. Division Algorithm

Proposition 2. Division Algorithm for Integers
Let m,n ∈ Z. There exist unique integers q, r ∈ Z such that

n = qm + r and 0 ≤ r < m.

Proof. Let X = {z ∈ Z | z = n − km for some k ∈ Z}. The subset of X
consisting of nonnegative integers is a subset of N, and by the Well-Ordering
Principle, contains a smallest member, say r. That is, r = n − qm for some
q ∈ Z, so n = qm + r. We know 0 ≤ r. Also, r < m, for otherwise, r − m is
positive, less than r, and in X.

For uniqueness, assume n = q1m+r1 and n = q2m+r2, where q1, r1, q2, r2 ∈ Z,
0 ≤ r1 < m, and 0 ≤ r2 < m. Then m(q1−q2) = r1−r2; also −m < r1−r2 < m.
Since m | (r1 − r2), we must have r1 − r2 = 0. Thus r1 = r2, which forces
q1 = q2. �

Definition 1. Let m,n ∈ Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Exercise 1. Show that the relation | is a partial order on the set of positive
integers.

Definition 2. Let m,n ∈ Z. A greatest common divisor of m and n, denoted
gcd(m,n), is a positive integer d such that

(1) d | m and d | n;
(2) If e | m and e | n, then e | d.

Proposition 3. Let m,n ∈ Z. Then there exists a unique d ∈ Z such that
d = gcd(m,n), and there exist integers x, y ∈ Z such that

d = xm + yn.

Proof. Let X = {z ∈ Z | z = xm + yn for some x, y ∈ Z}. Then the subset
of X consisting of positive integers contains a smallest member, say d, where
d = xm + yn for some x, y ∈ Z.

Now m = qd+ r for some q, r ∈ Z with 0 ≤ r < d. Then m = q(xm+ yn)+ r,
so r = (1 − qxm)m + (qy)n ∈ X. Since r < d and d is the smallest positive
integer in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k, l ∈ Z. Then
d = xke + yle = (xk + yl)e. Therefore e | d. This shows that d = gcd(m,n).

For uniqueness of a greatest common divisor, suppose that e also satifies the
conditions of a gcd. Then d | e and e | d. Thus d = ie and e = jd for some
i, j ∈ Z. Then d = ijd, so ij = 1. Since i and j are integers, then i = ±1. Since
d and e are both positive, we must have i = 1. Thus d = e. �

Exercise 2. Let m,n ∈ Z and suppose that there exist integers x, y ∈ Z such
that xm + yn = 1. Show that gcd(m,n) = 1.

Exercise 3. Let m,n ∈ N and suppose that m | n. Show that gcd(m,n) = m.
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3. Prime Decomposition Algorithm

Definition 3. An integer p ∈ Z is called prime if
(1) p ≥ 2;
(2) p = ab ⇒ a = 1 or b = 1, where a, b ∈ N.

Exercise 4. Let a, p ∈ Z such that p is prime.
Show that gcd(a, p) = 1 or gcd(a, p) = p.

Exercise 5. Show that there are infinitely many prime integers.
(Hint: assume there are only finitely many, multiply them, and add 1.)

Proposition 4 (Fundamental Theorem of Arithmetic). Let n ∈ Z. Then there
exist unique prime numbers p1 < · · · < pr, positive integers a1, . . . , ar, and
unique u ∈ {±1} such that

n = u
r∏

i=1

pai
i .

Proof. If n < 0, let u = −1; otherwise let u = 1. Let

X = {m ∈ Z | 1 < m ≤ un and m | n}
Let p = min(X). Clearly, p is prime. If n = up, we are done. Otherwise, n = upk
for some k ∈ Z. By strong induction, there exist q1 < . . . , qs and b1, . . . , bs such
that k =

∏s
i=1 qbi

i . If p = q1, set pi = qi, a1 = b1 + 1, and ai = bi for i > 1, and
r = s; otherwise set p1 = p, pi+1 = qi, a1 = 1, and ai+1 = bi, and r = s + 1.
Now n = u

∏r
i=1 pai

i . �

Program 1. Write a program to find the first MAX prime numbers.

Program 2. Write a program to find the gcd of two integers by finding the
common primes, using a table of primes generated by Program 1.
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4. Euclidean Algorithm

There is an efficient effective procedure for finding the greatest common divisor
of two integers. It is based on the following proposition.

Proposition 5. Let m,n ∈ Z, and let q, r ∈ Z be the unique integers such that
n = qm + r and 0 ≤ r < m. Then gcd(n, m) = gcd(m, r).

Proof. Let d1 = gcd(n, m) and d2 = gcd(m, r). Since “divides” is a partial order
on the positive integers, it suffices to show that d1 | d2 and d2 | d1.

By definition of common divisor, we have integers w, x, y, z ∈ Z such that
d1w = n, d1x = m, d2y = m, and d2z = r.

Then d1w = qd1x + r, so r = d1(w − qx), and d1 | r. Also d1 | m, so d1 | d2

by definition of gcd.
On the other hand, n = qd2y + d2z = d2(qy + z), so d2 | n. Also d2 | m, so

d2 | d1 by definition of gcd. �

Now let m,n ∈ Z be arbitrary integers, and write n = mq + r, where 0 ≤
r < m. Let r0 = n, r1 = m, r2 = r, and q1 = q. Then the equation becomes
r0 = r1q1 + r2. Repeat the process by writing m = rq2 + r3, which is the same
as r1 = r2q2 + r3, with 0 ≤ r3 < r2. Continue in this manner, so in the ith stage,
we have ri−1 = riqi + ri+1, with 0 ≤ ri+1 < ri. Since ri keeps getting smaller, it
must eventually reach zero.

Let k be the smallest integer such that rk+1 = 0. By the above proposition
and induction,

gcd(n, m) = gcd(m, r) = · · · = gcd(rk−1, rk).

But rk−1 = rkqk +rk+1 = rkqk. Thus rk | rk−1, so gcd(rk−1, rk) = rk. Therefore
gcd(n, m) = rk. This process for finding the gcd is known as the Euclidean
Algorithm.

Program 3. Write a function which takes m,n ∈ Z and uses the Euclidean
Algorithm to find d = gcd(m,n).
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In order to find the unique integers x and y such that xm + yn = gcd(m,n),
use the equations derived above and work backward. Start with rk = rk−2 −
rk−1qk−1. Substitute the previous equation rk−1 = rk−3 − rk−2qk−2 into this
one to obtain

rk = rk−2 − (rk−3 − rk−2qk−2)qk−1) = rk−2(qk−2qk−1 + 1)− rk−3qk−1.

Continuing in this way until you arrive back at the beginning.
For example, let n = 210 and m = 165. Work forward to find the gcd:

• 210 = 165 · 1 + 45;
• 165 = 45 · 3 + 30;
• 45 = 30 · 1 + 15;
• 30 = 15 · 2 + 0.

Therefore, gcd(210, 165) = 15. Now work backwards to find the coefficients:
• 15 = 45− 30 · 1;
• 15 = 45− (165− 45 · 3) = 45 · 4− 165;
• 15 = (210− 165) · 4− 165 = 210 · 4− 165 · 5.

Therefore, 15 = 210 · 4 + 165 · (−5).
Let’s briefly analyse the inductive process of “working backwards”.
At each stage, let m denote the smaller number and let n denote the larger

number. Always attach x to m and y to n, to get d = xm + yn, where d =
gcd(m,n). Now at the very end, the remainder is zero, so

n = mq + 0.

Thus m = gcd(n, m), that is, d = m. Writing d as a linear combination at this
stage, we have

d = (1)m + (0)nm

so x = 1 and y = 0.
Now we want to lift this to a previous equation of the form n = mq + r.

Assume, by way of induction, that we have already lifted it to the next equation;
that is, we have n′ = m′q′ + r′, where n′ = m, m′ = r, and we can express d as
a linear combination of m′ and n′, like this:

d = x′m′ + y′n′.

Then d = x′r+y′m. Substitute in r = n−mq to express d as a linear combination
of m and n; you get d = x′(n−mq) + y′m = (y′− x′q)m + x′n. Set x = y′− x′q
and y = x′ to obtain d = xm + yn.

Program 4. Write a function which takes m,n ∈ Z and uses the Euclidean
Algorithm to find d = gcd(m,n) and x, y ∈ Z such that xm + yn = d.

Hint. The computation of gcd(m,n) does not require the remembrance of the
previous equations; however, the computation of the x and y does. You can
either use an array to store the remainders, or you can use recursion. �
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