NUMERICAL ANALYSIS TOPIC I
THE EUCLIDEAN ALGORITHM

PAUL L. BAILEY

1. WELL-ORDERING PRINCIPLE

First we establish a few properties of the integers which we need in order
to develop the Euclidean algorithm. One tool which can be used to establish
these properties is the Well-Ordering Principle. This follows from the principle
of induction, which we assume.

Proposition 1. Well-Ordering Principle

Let X C N be a nonempty set of nonnegative integers. Then X contains a
smallest, element; that is, there exists g € X such that for every x € X,
z < xg.

Proof. Since X is nonempty, it contains an element, say 1. If 1 is the smallest
member of X, we are done, so assume that the set

Y={zeX|y<uz}

is nonempty. Since there are only finitely many natural numbers less than a
given natural number, Y is finite.

Proceed by induction on |Y]. If [Y]| = 1, then Y contains exactly one element,
which is vacuously the smallest member of Y.

Now assume that |Y'| = n. By induction, we assume that any nonempty set
with less than n elements contains a smallest member. Since Y is nonempty, let
xo € Y. If x5 is the smallest member of Y, we are done, so assume that the set

Z={zeY |z <}

is nonempty. Since xy ¢ Z, |Z| < n, so Z contains a smallest member (by our
inductive hypothesis), say zo. Then ¢ is also smaller than any element in Y.
This completes the proof by induction.

Thus every finite set of natural numbers has a smallest element, and since
Y is finite, is has a smallest element. This element is the smallest member of
X. O
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2. DIVISION ALGORITHM

Proposition 2. Division Algorithm for Integers
Let m,n € Z. There exist unique integers q,r € Z such that

n=qm-+r and 0<r<m.

Proof. Let X = {#z € Z | z = n — km for some k € Z}. The subset of X
consisting of nonnegative integers is a subset of N, and by the Well-Ordering
Principle, contains a smallest member, say r. That is, r = n — gm for some
q € 7Z,s0n=qgm+r. We know 0 < r. Also, » < m, for otherwise, r — m is
positive, less than r, and in X.

For uniqueness, assume n = ¢ym+ry and n = gaom-+ry, where q1,71,q2, 72 € Z,
0<r; <m,and 0 <ry <m. Then m(qy —gq2) = r1 —7r9; also —m < r1 —ry < m.
Since m | (ry — r2), we must have r; — ro = 0. Thus r; = ry, which forces
a1 = q2- O

Definition 1. Let m,n € Z. We say that m divides n, and write m | n, if there
exists an integer k such that n = km.

Exercise 1. Show that the relation | is a partial order on the set of positive
integers.

Definition 2. Let m,n € Z. A greatest common divisor of m and n, denoted
ged(m, n), is a positive integer d such that

(1) d|m and d | n;

(2) If e | m and e | n, then e | d.

Proposition 3. Let m,n € Z. Then there exists a unique d € Z such that
d = ged(m,n), and there exist integers x,y € Z such that

d=xm + yn.

Proof. Let X = {z € Z | z = xm + yn for some z,y € Z}. Then the subset
of X consisting of positive integers contains a smallest member, say d, where
d = xm + yn for some z,y € Z.

Now m = gd+r for some ¢,r € Z with 0 <r < d. Then m = g(xm+yn)+r,
sor = (1—gqgzm)m + (qgy)n € X. Since r < d and d is the smallest positive
integer in X, we have r = 0. Thus d | m. Similarly, d | n.

If e | m and e | n, then m = ke and n = le for some k,l € Z. Then
d = xke + yle = (xk + yl)e. Therefore e | d. This shows that d = ged(m,n).

For uniqueness of a greatest common divisor, suppose that e also satifies the
conditions of a ged. Then d | e and e | d. Thus d = ie and e = jd for some
i,j € Z. Then d = ijd, so ij = 1. Since i and j are integers, then ¢ = £1. Since
d and e are both positive, we must have ¢ = 1. Thus d = e. U

Exercise 2. Let m,n € Z and suppose that there exist integers x,y € Z such
that m + yn = 1. Show that ged(m,n) = 1.

Exercise 3. Let m,n € N and suppose that m | n. Show that ged(m,n) = m.



3. PRIME DECOMPOSITION ALGORITHM

Definition 3. An integer p € Z is called prime if
(1) p=>2;
(2) p=ab=a=1orb=1, where a,b € N.

Exercise 4. Let a,p € Z such that p is prime.
Show that ged(a,p) =1 or ged(a,p) = p.
Exercise 5. Show that there are infinitely many prime integers.

(Hint: assume there are only finitely many, multiply them, and add 1.)

Proposition 4 (Fundamental Theorem of Arithmetic). Let n € Z. Then there
exist unique prime numbers p; < --- < p,, positive integers ai,...,a,, and

unique u € {£1} such that
T
n=u pr*.
i=1

Proof. If n < 0, let u = —1; otherwise let u = 1. Let
X={meZ|l<m<unandm|n}

Let p = min(X). Clearly, p is prime. If n = up, we are done. Otherwise, n = upk
for some k € Z. By strong induction, there exist ¢; < ...,qs and by, ..., bs such
that k = Hle qff‘. If p=q,set p; =¢;, a1 =b1 +1, and a; = b; for i > 1, and
r = s; otherwise set p; = p, pi+1 = ¢i, a1 = 1, and a;41 = b;, and r = s+ 1.
Now n =u[];_, pj. O

Program 1. Write a program to find the first MAX prime numbers.

Program 2. Write a program to find the gcd of two integers by finding the
common primes, using a table of primes generated by Program 1.



4. EUCLIDEAN ALGORITHM

There is an efficient effective procedure for finding the greatest common divisor
of two integers. It is based on the following proposition.

Proposition 5. Let m,n € Z, and let q,r € Z be the unique integers such that
n=qgm+r and 0 <r <m. Then ged(n,m) = ged(m,r).

Proof. Let d; = ged(n, m) and dy = ged(m, 7). Since “divides” is a partial order
on the positive integers, it suffices to show that d; | d2 and ds | d;.

By definition of common divisor, we have integers w,z,y,z € Z such that
diw =n, dix =m, doy = m, and doz = 7.

Then dyw = qdyxz + 71, sor = dy(w — gx), and dy | r. Also dy | m, so dy | da
by definition of ged.

On the other hand, n = qday + doz = da(qy + z), so da | n. Also da | m, so
dy | dy by definition of ged. O

Now let m,n € Z be arbitrary integers, and write n = mq + r, where 0 <
r<m. Let ro =n, r, =m, ro =r, and ¢ = ¢q. Then the equation becomes
ro = r1q1 + 2. Repeat the process by writing m = rgs + r3, which is the same
as 11 = raqa + 13, with 0 < r3 < ro. Continue in this manner, so in the it" stage,
we have ;-1 = r;q; + 1541, with 0 < r; 41 < ;. Since r; keeps getting smaller, it
must eventually reach zero.

Let k£ be the smallest integer such that r;11 = 0. By the above proposition
and induction,

ged(n,m) = ged(m,r) = -+ = ged(ri—1,7%)-

But 7-1 = reqr + k41 = rrqr. Thus 7 | 71, so ged(rk—1,7%) = ri. Therefore
ged(n,m) = 7. This process for finding the ged is known as the Euclidean
Algorithm.

Program 3. Write a function which takes m,n € Z and uses the Euclidean
Algorithm to find d = ged(m, n).
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In order to find the unique integers x and y such that zm + yn = ged(m, n),
use the equations derived above and work backward. Start with rp = rg_o —
Tk_1qrk—1. Substitute the previous equation ry_1 = rg_3 — Tk_2@r_2 into this
one to obtain

Tk =Tk—2— (Tk—3 - 7"k72Qk72)Qk71) = 7"k72(Qk72Qk71 + 1) — Tk—349k—1-

Continuing in this way until you arrive back at the beginning.
For example, let n = 210 and m = 165. Work forward to find the ged:

e 210 = 165 - 1 + 45;
o 165 =45 - 3 + 30;
e 45=130-1+ 15;
e 30=15-2+40.

Therefore, ged(210,165) = 15. Now work backwards to find the coefficients:
e 15=45-30-1;
e 15=45— (165 —45-3) =45-4 — 165;
e 15=(210—165)-4 — 165 =210-4 — 165 - 5.
Therefore, 15 = 210 - 4 + 165 - (—5).
Let’s briefly analyse the inductive process of “working backwards”.
At each stage, let m denote the smaller number and let n denote the larger
number. Always attach z to m and y to n, to get d = xm + yn, where d =
ged(m,n). Now at the very end, the remainder is zero, so

n =mq + 0.

Thus m = ged(n,m), that is, d = m. Writing d as a linear combination at this
stage, we have

d= (1)m+ (0)nm
sox=1and y=0.

Now we want to lift this to a previous equation of the form n = mq + 7.
Assume, by way of induction, that we have already lifted it to the next equation;
that is, we have n’ = m/q’ + 1/, where n’ = m, m’ = r, and we can express d as
a linear combination of m’ and n/, like this:

d=2'm +y'n.
Then d = 2'r+y'm. Substitute in r = n—mgq to express d as a linear combination
of m and n; you get d = z'(n—mq)+y'm = (y —2'qg)ym+a'n. Set x =y —2'q
and y = ' to obtain d = zm + yn.

Program 4. Write a function which takes m,n € Z and uses the Euclidean
Algorithm to find d = ged(m, n) and z,y € Z such that zm + yn = d.

Hint. The computation of ged(m,n) does not require the remembrance of the
previous equations; however, the computation of the z and y does. You can
either use an array to store the remainders, or you can use recursion. U
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